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The injection site is relatively close to the Pond-Poso Creek fault system. The propagation of 
both the carbon dioxide plume and the pressure perturbation across the fault line is thus of 
interest and depends on whether these faults are sealing or non-sealing. As the analyses 
described in the narrative permit application report show, the lateral sealing effectiveness 
critically depends on the shale gouge ratio.  Section 2.1.5.2 of the permit application report 
describes Allan diagrams and shale gouge ratio determination for the Pond-Poso Creek fault, 
and Figure 2-38 of the permit application report presents a diagram and map of fine-scaled 
cross-sections that were generated along the fault system.   

Table 1-2 of this report presents a conceptualization of the permeability of the Pond-Poso Creek 
fault that was generated for the purpose of TOUGH2 modeling.  Permeability of the fault gouge 
at each fault location was determined based on the shale gouge ratio at each location for the 
Olcese, Upper Vedder, and Vedder 3 units.  Four subcategories were assigned to each location 
and geologic formation along the fault, with horizontal permeability ranging from 0.001 to 0.5 
millidarcies.  As discussed in Section 1.6, below, additional sensitivity analysis simulations were 
conducted considering both sealing and non-sealing faults.   

1.4 Numerical Model Implementation 
Numerical modeling implementation includes converting the geologic model grid to a 
numerical modeling grid, and populating the grid within initial parameter values and boundary 
conditions.  Numerical model mesh generation, initial conditions and boundary conditions are 
described below. 

1.4.1 Mesh Generation 
The three-dimensional (3-D) mesh for the TOUGH2 simulations presented in this report was 
created using AMESH (Haukwa, 1998) together with pre- and post-processing scripts written in 
Python, that (1) process relevant site characterization information, such as geological layering 
and fault trace data; (2) generate the input file needed to run AMESH; and (3) perform post-
processing of AMESH output. Post-processing includes, for example, assigning materials to 
elements and removing elements and connections that are considered outside the simulation 
domain. Some details regarding discretization and material assignment are given below. 

Creating a 3-D, unstructured grid of Voronoi elements with AMESH requires specification of 2-D 
grid points in the X-Y plane, which are then repeated at multiple depths in the Z direction. Note 
that for simplicity, latitude, longitude, and elevation are referred to as X, Y, and Z, respectively. 
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For the current mesh, the X-Y grid is composed of a “background” grid, which contains radial 
and Cartesian components, within which fault trace grid points are embedded. The resulting X-Y 
grid is shown in Figure 1-1.  

Specifically, the background grid contains (1) a radial portion with 24 equally spaced 15° sectors, 
centered around the well coordinates (X,Y) = (294,000 meters [m], 3,951,600 m), and extending 
outward 6 kilometers (km) with a radial spacing from 10 m up to 1,000 m; (2) a Cartesian portion 
(surrounding the radial portion) with 1,000 m discretization in the X and Y directions; (3) a 
second, coarser Cartesian portion (surrounding the first Cartesian portion) with 4,000 m 
discretization in the X and Y directions; and (4) thin layers of elements on the north, south, east, 
and west boundaries. Discretization in the Z direction is given by uniform 5 m spacing over the 
vertical extent of relevant geological layers (from elevations of -5,500 m to 400 m).  

To accurately represent each fault in the model, grid points are placed along lines determined 
through interpolation of fault trace data; grid points are automatically spaced along the 
interpolated lines in a manner that is consistent with the background grid. Additional grid points 
are placed on the sides of each fault grid point (in a direction from the fault grid point that is 
perpendicular to the fault trace) to ensure that the fault elements are smoothly connected to 
each other and have the desired width. In some cases, it is necessary to manually adjust a grid 
point (e.g., to ensure that intersecting faults are connected appropriately). When fault grid 
points overlap with or are too close to background grid points, those background grid points 
are removed.  

Figure 1-2 shows a fault embedded within the radial portion of the background grid. Figure 1-3 
and Figure 1-4 demonstrate how intersecting faults are connected in the mesh. The Jasmin 
faults (Figure 1-4) are relatively far away from the carbon dioxide injection area and are 
therefore embedded in a region of the background mesh with lower resolution.  

Note that faults in the model are assumed to be vertical, but they may or may not extend 
vertically through the entire model. That is, a “potential” fault element at a given X-Y location at 
one depth may be assigned fault properties, whereas another potential fault element at the 
same X-Y position and at a different depth may be assigned some other geological material if 
no fault is present at that depth based on the conceptual model. 

Assignment of materials in the mesh is based on (1) a dataset that contains the elevations of the 
upper surfaces of the geological layers of interest (ground surface, USDW, Round Mountain, 
Olcese, Freeman-Jewett, multiple sand and shale layers within the Vedder formation, and 
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Walker) on an X-Y grid with a 200 m by 200 m resolution; and (2) fault trace data in which (a) 
lists of X-Y coordinates form fault traces, (b) the depth ranges over which the faults are present, 
and (c) fault sections that receive an additional sub-category during the assignment of fault 
properties (e.g., such that some parts of a fault may be treated as sealing, others as partially 
sealing or non-sealing). 

The procedure for assigning materials to the mesh processes one column of elements at a time. 
Each column, which corresponds to a unique pair of X-Y coordinates, is categorized as follows: 
(1) a column of vertical boundary elements (on the north, south, east, or west model 
boundaries), (2) a column of elements that may belong to a given fault depending on the depth 
range over which the fault is present, (3) a column of elements that are not fault elements but 
are next to and share a boundary to the east or west of potential fault elements, or (4) a column 
of regular elements from the initial background grid (i.e., all other cases). 

For each element, it is determined to which geological layer the element belongs based on its 
elevation Z within a column and the corresponding entry in the table of geological layer data; 
the identified material identifier is assigned to the element. Depending on the category of 
element being considered (described in the previous paragraph), and based on the geological 
layer determination, some elements require additional consideration.  

For example, to reduce the size of the mesh and increase computational efficiency, elements are 
removed from the mesh if they are outside of what is considered the simulation domain, 
namely, if they are determined to be: (a) above the ground surface, (b) more than 50 m above 
the Olcese surface, (c) more than 50 m below the Walker surface; or (d) south of the curved 
boundary on the southern and parts of the eastern borders of the model. Cutting such elements 
and connections from the basic grid reduces the number of elements and connections from 
approximately 1,343,000 to 140,000, and from approximately 4,518,000 to 432,000, respectively.  

The bounding box of the final grid is given by the following coordinate ranges: 274,000 m < 
Longitude < 328,600 m; 3,928,200 m < Latitude < 3,970,600 m; -5,440 masl < elevation < 345 
masl. This model domain size is sufficiently large so that boundary effects are insignificant, as 
confirmed by the results of the analysis (see Case M in Section 1.6). The injection well is located 
at (X,Y) = (294,000, Y = 3,951,600). 

The remaining upper-most and lower-most elements in a column are specified as top and 
bottom boundary materials, respectively. If the top element was the ground surface, then it 
receives its own ground surface boundary material instead of the “top” boundary material. If a 
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Figure 1-1 

Notes:  Plan view of the 3-D mesh used in the TOUGH2 simulations presented in this report, which includes faults embedded in a 
background mesh containing radial and Cartesian regions and thin boundary elements on the north, south, east, and west boundaries. 
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Figure 1-2 
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Figure 1-3 
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Figure 1-4 
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Figure 1-5 
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